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First Total Synthesis of Mycinamicin IV and VII. 

Successful Application of New Glycosidation Reaction 

Takashi Matsumoto, Hideki Maeta, Keisuke Suzuki*, and late Gen-ichi Tsuchihashi 

Department of Chemistry, Keio University, Hiyoshi, Yokohama 223, Japan 

Summary: First total synthesis of mycinamicin IV via mycinamicin VII is described. 

New glycosidation reaction using Cp2MC12-AgC104 (M=Zr, Hf) was effectively applied to 

the selective introduction of a-D-mycinosyl and O-D-desosaminyl linkages. 

Mycinamicins constitute a novel class of macrolide antibiotics with strong 

antibacterial activities, produced by Micromonospora qriseorubida sp. nav." 

We have synthesized the aglycons, 2) mycinolide IV (l_)2a) and protomycinolide IV 

(2, 
2b) by way of the rearrangement-based acyclic stereocontrol. To complete 

the synthesis, we turned our attention to the glycosylation of 1. 

Glycosidation of macrolides is undoubtedly an important problem, since the 

biological activities depend heavily on the sugar portion. However, only a 

few successful examples have been recorded in the synthesis of the full 

structures armed with the sugar(s), 3) which is in sharp contrast with the vast 

number of successes in aglycon synthesis. 4) The problem resides in that the 

classical methods are unready to glycosylate the macrocyclic aglycons with the 

low reactivity and yet the high chemical sensitivity. 5,6) 

We found a novel activation system for glycosyl fluorides, 

(M=Zr, Hf),7) 

Cp2MC12-AgC104 

having a promising potentiality. Herein, we wish to describe 

the first total synthesis of mycinamicin IV (3) , via mycinamicin VII, which 

definitely demonstrates the efficiency of new glycosidation reaction. 
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The order of two glycosidations was chosen that the D-desosamine is 

introduced first (to the C(5)-OH) followed by the D-mycinose (to the C(21)-OH). 

Thus, mycinolide IV (1)2a) was benzoylated under the strictly-controlled 

conditions to give selectively mono-protected aglycon 2 in 96 8 yield. The 

first glycosidation to 5, however, posed an extremely hard problem, which was 

not only due to the low reactivity by the sterically crowded nature of the C(5) 

hydroxyl group but also due to its propensity to 

internally cyclize to the C(9) carbonyl group 
: 

even . 
. 

under weakly acidic conditions to result in the 

formation of bicylic enol ether 4. 8,9) 0 

On this occasion, our new glycosidation protocol 7) 
..* 

worked well. The reaction of 5 with the fluoride N in 

the presence of Cp2HfC12-AgCIOq in CH2C12 at o-5 Oc 
0 

proceeded smoothly to afford 5 in 72 8 yield with the 

of ~&3=1/6.'~) 

!? 

0 
ratio Central to this successful 

joining is the rapidity of the reaction which can BzO 
4 

exclude the competing cyclic dehydration. Actually, 

attempted reactions by employing some other methods6a'b' were considerably 

slower, which led to the formation of 4 in variable yields. 

After the anomers were separated (basic A1203 TLC), 11) the two protecting 

groups of 6 were once detached to afford 1 in 75 8 yield. Compound 1 is 

mycinamicin VII, lc) one of the minor components in the mycinamicin macrolides, 

which was fully identical to the natural sample [[al;' +51° (c 0.51, DMSO), lit. 

[al;* +50.1° (c 0.5, DMSO)].1c'8) Subsequent treatment of 1 with methyl 

chloroformate without additional base cleanly afforded the alcohol S, 

selectively protected at the sugar portion, ready for the second glycosidation. 

Without the advantage of the neighboring participation, the main issue in 

the formation of a-mycinosyl linkage lies in the stereocontrol. Here again, 

our new protocol worked efficiently under the conditions found in the extensive 

model study. 7) Namely, the reaction of alcohol S with fluoride 11 in the 

presence of Cp2ZrC12-AgC104 _ in benzene proceeded smoothly to furnish glycoside 

2 in 86 8 yield with an excellent selectivity in favor of the desired S-anomer 

(a / B = 1 / 26).12) After the e-anomer was removed chromatographically, the 

hydrolytic cleavage of the protecting groups of 2 uneventfully afforded 

mycinamicin IV (3) [[ali +2.8O (c 1.5, MeOH), lit.la) [alA +2.7 O (c 1.0, 

MeOH)] which was identical in full respects to the authentic sample. 8,13) 

In summary, the first total synthesis of mycinamicin IV (3) and VII (1, 

was accomplished. The synthesis not only records a flexible and stereo- 

selective access to the mycinamicin-class macrolide antibiotics but also shows 

the promising potentiality of the new glycosidation reaction. 
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Keys: a) PhCOCl (1.2 equiv.) / pyridine-CH2C12 (l:l), 0 OC, 1 hr (96 %); b) x 

(3 equiv.), Cp2HfC12 (5 equiv.), AgC104 (5 equiv.) / CHlC12, 0-5 OC, 2 hr (72 

%); c) Et3N-H20-MeOH (1:1:5), 70 OC, 3 hr (75 %); d) ClCOpe (2 equiv.) / 

CH2C12, 0 OC, 1 hr (quant.); e) 11 (3 equiv.), CP2ZrC12 (5 equiv.), - AgelO (5 

equiv.) / C6H6, rt, lhr (86 0); f) Et3N-H20-MeOH (1:1:5), rt, 16 hr (73 %). 
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B-6: [a];+34' (c 1.4, CHC13), NMR (a, CDC13): H(I') 4.33 (d, J=7.3 Hz); C(1') 102.5; IR 

(neat) 1750. 1720, 1680. 1650, 1635, 1595 cm-'; HRMS: m/z 683.3657 (683.3665 calcd for 
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for C37H610,1N, M+). 
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